Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.826
Filtrar
1.
Parasit Vectors ; 17(1): 183, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600549

RESUMO

BACKGROUND: Clothianidin-based indoor residual spraying (IRS) formulations have become available for malaria control as either solo formulations of clothianidin or a mixture of clothianidin with the pyrethroid deltamethrin. While both formulations have been successfully used for malaria control, studies investigating the effect of the pyrethroid in IRS mixtures may help improve our understanding for development of future IRS products. It has been speculated that the irritant effect of the pyrethroid in the mixture formulation may result in shorter mosquito contact times with the treated walls potentially leading to a lower impact. METHODS: We compared contact irritancy expressed as the number of mosquito take-offs from cement surfaces treated with an IRS formulation containing clothianidin alone (SumiShield® 50WG) to clothianidin-deltamethrin mixture IRS formulations against pyrethroid-resistant Anopheles gambiae sensu lato under controlled laboratory conditions using a modified version of the World Health Organisation cone bioassay. To control for the pyrethroid, comparison was made with a deltamethrin-only formulation. Both commercial and generic non-commercial mixture formulations of clothianidin and deltamethrin were tested. RESULTS: The clothianidin solo formulation did not show significant contact irritancy relative to the untreated control (3.5 take-offs vs. 3.1 take-offs, p = 0.614) while all deltamethrin-containing IRS induced significant irritant effects. The number of take-offs compared to the clothianidin solo formulation (3.5) was significantly higher with the commercial clothianidin-deltamethrin mixture (6.1, p = 0.001), generic clothianidin-deltamethrin mixture (7.0, p < 0.001), and deltamethrin-only (8.2, p < 0.001) formulations. The commercial clothianidin-deltamethrin mixture induced similar contact irritancy as the generic clothianidin-deltamethrin mixture (6.1 take-offs vs. 7.0 take-offs, p = 0.263) and deltamethrin-only IRS (6.1 take-offs vs. 8.2, p = 0.071), showing that the irritant effect in the mixture was attributable to its deltamethrin component. CONCLUSIONS: This study provides evidence that the enhanced contact irritancy of the pyrethroid in clothianidin-deltamethrin IRS mixtures can shorten mosquito contact times with treated walls compared to the clothianidin solo formulation. Further trials are needed to directly compare the efficacy of these formulation types under field conditions and establish the impact of this enhanced contact irritancy on the performance of IRS mixture formulations containing pyrethroids.


Assuntos
Anopheles , Guanidinas , Inseticidas , Malária , Neonicotinoides , Nitrilas , Piretrinas , Tiazóis , Animais , Inseticidas/farmacologia , Irritantes/farmacologia , Controle de Mosquitos , Piretrinas/farmacologia , Malária/prevenção & controle , Resistência a Inseticidas , Mosquitos Vetores
2.
Parasitol Res ; 123(4): 194, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656453

RESUMO

Light-Emitting Diodes (LEDs) have been effective light sources in attracting Anopheles mosquitoes, but the broad-spectrum white light, even with a wide-ranging application in lighting, have not been evaluated yet. In this study, the white light was field evaluated against the green one in the light trapping of anopheline mosquitoes by using two non-suction Silva traps and two CDC-type suction light traps. Anopheline mosquitoes were captured for two 21-night periods of collecting (2022 and 2023). In the first period, two LEDs were used per Silva trap, but three were used in the second one to increase the luminance/illuminance at traps. A CDC-type suction light trap equipped with an incandescent lamp was used in 2022 and a CDC-type suction light trap equipped with a 6 V-white light (higher luminance/illuminance) in 2023. A total of eight species and 3,289 specimens were captured in both periods. The most frequent species were Anopheles triannulatus s.l., An. goeldii, An. evansae and An. argyritarsis. In 2022, white LEDs were less attractive to anopheline mosquitoes than the other light sources, but without statistical difference among treatments (F = 2.703; P = 0.0752; df = 2). In 2023, even with an increased luminance/illuminance at traps, no statistical difference was found between the two LED-baited Silva traps (F = 6.690; P = 0.0024; df = 2), but rather between the 6 V-white-baited CDC-type suction light trap and green-baited Silva traps. Due to some drawbacks and the lower abundance of individuals caught by using white LEDs, the narrow-banded green LEDs is preferable to white ones for attracting anophelines.


Assuntos
Anopheles , Luz , Controle de Mosquitos , Animais , Anopheles/fisiologia , Anopheles/efeitos da radiação , Controle de Mosquitos/métodos , Controle de Mosquitos/instrumentação
3.
Malar J ; 23(1): 119, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664703

RESUMO

BACKGROUND: The residual activity of a clothianidin + deltamethrin mixture and clothianidin alone in IRS covered more than the period of malaria transmission in northern Benin. The aim of this study was to show whether the prolonged residual efficacy of clothianidin-based products resulted in a greater reduction in vector populations and subsequent malaria transmission compared with the shorter residual efficacy of pirimiphos-methyl. METHODS: Human bait mosquito collections by local volunteers and pyrethrum spray collections were used in 6 communes under IRS monitoring and evaluation from 2019 to 2021. ELISA/CSP and species PCR tests were performed on Anopheles gambiae sensu lato (s.l.) to determine the infectivity rate and subspecies by commune and year. The decrease in biting rate, entomological inoculation rate, incidence, inhibition of blood feeding, resting density of An. gambiae s.l. were studied and compared between insecticides per commune. RESULTS: The An. gambiae complex was the major vector throughout the study area, acounting for 98.71% (19,660/19,917) of all Anopheles mosquitoes collected. Anopheles gambiae s.l. collected was lower inside treated houses (45.19%: 4,630/10,245) than outside (54.73%: 5,607/10,245) after IRS (p < 0.001). A significant decrease (p < 0.001) in the biting rate was observed after IRS in all departments except Donga in 2021 after IRS with clothianidin 50 WG. The impact of insecticides on EIR reduction was most noticeable with pirimiphos-methyl 300 CS, followed by the clothianidin + deltamethrin mixture and finally clothianidin 50 WG. A reduction in new cases of malaria was observed in 2020, the year of mass distribution of LLINs and IRS, as well as individual and collective protection measures linked to COVID-19. Anopheles gambiae s.l. blood-feeding rates and parous were high and similar for all insecticides in treated houses. CONCLUSION: To achieve the goal of zero malaria, the optimal choice of vector control tools plays an important role. Compared with pirimiphos-methyl, clothianidin-based insecticides induced a lower reductions in entomological indicators of malaria transmission.


Assuntos
Anopheles , Guanidinas , Inseticidas , Malária , Controle de Mosquitos , Mosquitos Vetores , Neonicotinoides , Compostos Organotiofosforados , Piretrinas , Tiazóis , Animais , Anopheles/efeitos dos fármacos , Inseticidas/farmacologia , Guanidinas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Neonicotinoides/farmacologia , Tiazóis/farmacologia , Controle de Mosquitos/métodos , Compostos Organotiofosforados/farmacologia , Malária/prevenção & controle , Malária/transmissão , Benin , Nitrilas/farmacologia , Humanos
4.
Sci Rep ; 14(1): 9044, 2024 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641670

RESUMO

Vector control is one of the principal strategies used for reducing malaria transmission. Long-lasting insecticidal bed nets (LLINs) are a key tool used to protect populations at risk of malaria, since they provide both physical and chemical barriers to prevent human-vector contact. This study aimed to assess the physical durability and insecticidal efficacy of LLINs distributed in Cruzeiro do Sul (CZS), Brazil, after 4 years of use. A total of 3000 LLINs (PermaNet 2.0) were distributed in high malaria risk areas of CZS in 2007. After 4 years of use, 27 'rectangular' LLINs and 28 'conical' LLINs were randomly selected for analysis. The evaluation of physical integrity was based on counting the number of holes and measuring their size and location on the nets. Insecticidal efficacy was evaluated by cone bioassays, and the amount of residual insecticide remaining on the surface of the LLINs was estimated using a colorimetric method. After 4 years of use, physical damage was highly prevalent on the rectangular LLINs, with a total of 473 holes detected across the 27 nets. The upper portion of the side panels sustained the greatest damage in rectangular LLINs. The overall mosquito mortality by cone bioassay was < 80% in 25/27 rectangular LLINs, with panel A (at the end of the rectangular bednet) presenting the highest mortality (54%). The overall mean insecticide concentration was 0.5 µg/sample, with the bednet roof containing the highest average concentration (0.61 µg/sample). On the conical LLINs, 547 holes were detected, with the bottom areas sustaining the greatest damage. The cone bioassay mortality was < 80% in 26/28 of the conical LLINs. The mean insecticide concentration was 0.3 µg/sample. After 4 years of use, the insecticidal efficacy of the LLINs was diminished to below acceptable thresholds.


Assuntos
Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Animais , Humanos , Inseticidas/farmacologia , Brasil , Controle de Mosquitos/métodos , Mosquitos Vetores , Malária/prevenção & controle
5.
Malar J ; 23(1): 113, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643165

RESUMO

BACKGROUND: Microsporidia MB, an endosymbiont naturally found in Anopheles mosquitoes inhibits transmission of Plasmodium and is a promising candidate for a transmission-blocking strategy that may involve mosquito release. A rapid assessment was carried out to develop insight into sociodemographic factors, public health concerns, and malaria awareness, management, and prevention practices with the willingness to accept and participate in Microsporidia MB-based transmission-blocking strategy to develop an informed stakeholder engagement process. METHODS: The assessment consisted of a survey conducted in two communities in western Kenya that involved administering a questionnaire consisting of structured, semi-structured, and open questions to 8108 household heads. RESULTS: There was an overall high level of willingness to accept (81%) and participate in the implementation of the strategy (96%). Although the willingness to accept was similar in both communities, Ombeyi community was more willing to participate (OR 22, 95% CI 13-36). Women were less willing to accept (OR 0.8, 95% CI 0.7-0.9) compared to men due to fear of increased mosquito bites near homes. Household heads with incomplete primary education were more willing to accept (OR 1.6, 95% CI 01.2-2.2) compared to those educated to primary level or higher. Perceiving malaria as a moderate or low public health issue was also associated with a lower willingness to accept and participate. Experience of > 3 malaria cases in the family over the last six months and knowledge that malaria is transmitted by only mosquito bites, increased the willingness to accept but reduced the willingness to participate. Awareness of malaria control methods based on mosquitoes that cannot transmit malaria increases the willingness to participate. CONCLUSION: The study showed a high level of willingness to accept and participate in a Microsporidia MB-based strategy in the community, which is influenced by several factors such as community, disease risk perception, gender, education level, knowledge, and experience of malaria. Further research will need to focus on understanding the concerns of women, educated, and employed community members, and factors that contribute to the lower disease risk perception. This improved understanding will lead to the development of an effective communication strategy.


Assuntos
Mordeduras e Picadas de Insetos , Malária , Microsporídios , Masculino , Animais , Humanos , Feminino , Quênia , Malária/prevenção & controle , Saúde Pública , Controle de Mosquitos/métodos , Mosquitos Vetores
6.
Malar J ; 23(1): 107, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632650

RESUMO

BACKGROUND: Achieving effective control and elimination of malaria in endemic regions necessitates a comprehensive understanding of local mosquito species responsible for malaria transmission and their susceptibility to insecticides. METHODS: The study was conducted in the highly malaria prone Ujina Primary Health Center of Nuh (Mewat) district of Haryana state of India. Monthly entomological surveys were carried out for adult mosquito collections via indoor resting collections, light trap collections, and pyrethrum spray collections. Larvae were also collected from different breeding sites prevalent in the region. Insecticide resistance bioassay, vector incrimination, blood meal analysis was done with the collected vector mosquitoes. RESULTS: A total of 34,974 adult Anopheles mosquitoes were caught during the survey period, out of which Anopheles subpictus was predominant (54.7%). Among vectors, Anopheles stephensi was predominant (15.5%) followed by Anopheles culicifacies (10.1%). The Human Blood Index (HBI) in the case of An. culicifacies and An. stephensi was 6.66 and 9.09, respectively. Vector incrimination results revealed Plasmodium vivax positivity rate of 1.6% for An. culicifacies. Both the vector species were found resistant to DDT, malathion and deltamethrin. CONCLUSION: The emergence of insecticide resistance in both vector species, compromises the effectiveness of commonly used public health insecticides. Consequently, the implementation of robust insecticide resistance management strategies becomes imperative. To effectively tackle the malaria transmission, a significant shift in vector control strategies is warranted, with careful consideration and adaptation to address specific challenges encountered in malaria elimination efforts.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Animais , Humanos , Inseticidas/farmacologia , Resistência a Inseticidas , Malária/prevenção & controle , DDT , Controle de Mosquitos/métodos , Mosquitos Vetores , Nitrilas , Índia/epidemiologia
7.
PLoS Negl Trop Dis ; 18(4): e0012081, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38630673

RESUMO

BACKGROUND: Dengue virus (DENV) is endemic to many parts of the world and has serious health and socioeconomic effects even in high-income countries, especially with rapid changes in the climate globally. We explored the literature on dengue vector control methods used in high-income, city settings and associations with dengue incidence, dengue prevalence, or mosquito vector densities. METHODS: Studies of any design or year were included if they reported effects on human DENV infection or Aedes vector indices of dengue-specific vector control interventions in high-income, city settings. RESULTS: Of 24 eligible sources, most reported research in the United States (n = 8) or Australia (n = 5). Biocontrol (n = 12) and chemical control (n = 13) were the most frequently discussed vector control methods. Only 6 sources reported data on the effectiveness of a given method in reducing human DENV incidence or prevalence, 2 described effects of larval and adult control on Aedes DENV positivity, 20 reported effectiveness in reducing vector density, using insecticide, larvicide, source reduction, auto-dissemination of pyriproxyfen and Wolbachia, and only 1 described effects on human-vector contact. CONCLUSIONS: As most studies reported reductions in vector densities, rather than any effects on human DENV incidence or prevalence, we can draw no clear conclusions on which interventions might be most effective in reducing dengue in high-income, city areas. More research is needed linking evidence on the effects of different DENV vector control methods with dengue incidence/prevalence or mosquito vector densities in high-income, city settings as this is likely to differ from low-income settings. This is a significant evidence gap as climate changes increase the global reach of DENV. The importance of community involvement was clear in several studies, although it is impossible to tease out the relative contributions of this from other control methods used.


Assuntos
Aedes , Vírus da Dengue , Dengue , Adulto , Animais , Humanos , Dengue/epidemiologia , Mosquitos Vetores , Controle de Mosquitos/métodos , Cidades
8.
Malar J ; 23(1): 94, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575937

RESUMO

BACKGROUND: Despite remarkable progress in malaria burden reduction, malaria continues to be a major public health problem globally. Ethiopia has been distributing long-lasting insecticidal nets (LLINs) for free and nationwide distribution was completed in 2016. However, evidence suggests that the utilization of LLINs varies from setting to setting and from time to time due to different factors, and up-to-date evidence is required for LLIN related decision-making. Hence, this study was designed to assess LLIN utilization and its determinants in the Southern Nations, Nationalities, and People's Region (SNNPR) of Ethiopia. METHODS: A community-based cross-sectional study was conducted in Southern Ethiopia in 2019. Using multi-stage sampling, a total of 2466 households were included. The region was stratified based on the annual malaria index as high, moderate, low, and free strata. Cluster sampling was then applied to select households from high, moderate, and low strata. Data on LLIN ownership, utilization and different determinant factors were collected using household questionnaire. SurveyCTO was used to collect data and data was managed using Stata 15. Descriptive statistics and multilevel mixed-effects logistic regression were performed to identify the determinants of utilization of LLINs. Effect measures were reported using adjusted odds ratio (AOR) with 95% CI. RESULTS: From a total of 2466 households, 48.7% of households had at least one LLIN. LLIN adequacy based on family size was 23% while it was15.7% based on universal access and 29.2% based on sleeping space. From 1202 households that possessed LLIN(s), 66.0% of households reported that they slept under LLIN the night preceding the survey. However, when the total population in all surveyed households were considered, only 22.9% of household members slept under LLIN the night preceding the survey. Malaria endemicity, educational status, wealth status, and knowledge about malaria were associated with LLINs utilization. In addition, reasons for non-use included perceived absence of malaria, side effects of LLIN, conditions of LLINs, inconvenient space and low awareness. CONCLUSION: Low LLIN coverage and low utilization were noted. A low level of utilization was associated with malaria endemicity, wealth status and level of awareness. Distribution of LLIN and continuous follow-up with community awareness creation activities are vital to improve coverage and utilization of LLINs, and to ensure the country's malaria elimination goal.


Assuntos
Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Humanos , Estudos Transversais , Etiópia/epidemiologia , Malária/epidemiologia , Malária/prevenção & controle , Saúde Pública , Controle de Mosquitos/métodos
9.
Sci Rep ; 14(1): 8650, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622230

RESUMO

Resistance to insecticides and adaptation to a diverse range of environments present challenges to Anopheles gambiae s.l. mosquito control efforts in sub-Saharan Africa. Whole-genome-sequencing is often employed for identifying the genomic basis underlying adaptation in Anopheles, but remains expensive for large-scale surveys. Reduced coverage whole-genome-sequencing can identify regions of the genome involved in adaptation at a lower cost, but is currently untested in Anopheles mosquitoes. Here, we use reduced coverage WGS to investigate population genetic structure and identify signatures of local adaptation in Anopheles mosquitoes across southern Ghana. In contrast to previous analyses, we find no structuring by ecoregion, with Anopheles coluzzii and Anopheles gambiae populations largely displaying the hallmarks of large, unstructured populations. However, we find signatures of selection at insecticide resistance loci that appear ubiquitous across ecoregions in An. coluzzii, and strongest in forest ecoregions in An. gambiae. Our study highlights resistance candidate genes in this region, and validates reduced coverage WGS, potentially to very low coverage levels, for population genomics and exploratory surveys for adaptation in Anopheles taxa.


Assuntos
Anopheles , Inseticidas , Piretrinas , Animais , Resistência a Inseticidas/genética , Gana/epidemiologia , Inseticidas/farmacologia , Controle de Mosquitos
10.
PLoS Negl Trop Dis ; 18(4): e0012110, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598547

RESUMO

The global shipping network (GSN) has been suggested as a pathway for the establishment and reintroduction of Aedes aegypti and Aedes albopictus primarily via the tire trade. We used historical maritime movement data in combination with an agent-based model to understand invasion risk in the United States Gulf Coast and how the risk of these invasions could be reduced. We found a strong correlation between the total number of cargo ship arrivals at each port and likelihood of arrival by both Ae. aegypti and Ae. albopictus. Additionally, in 2012, 99.2% of the arrivals into target ports had most recently visited ports likely occupied by both Ae. aegypti and Ae. albopictus, increasing risk of Aedes invasion. Our model results indicated that detection and removal of mosquitoes from containers when they are unloaded effectively reduced the probability of mosquito populations establishment even when the connectivity of ports increased. To reduce the risk of invasion and reintroduction of Ae. aegypti and Ae. albopictus, surveillance and control efforts should be employed when containers leave high risk locations and when they arrive in ports at high risk of establishment.


Assuntos
Aedes , Navios , Aedes/fisiologia , Animais , Mosquitos Vetores/fisiologia , Controle de Mosquitos/métodos , Comércio , Estados Unidos , Espécies Introduzidas
11.
J Nepal Health Res Counc ; 21(3): 479-485, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38615221

RESUMO

BACKGROUND: Larval source management is an effective measure to control mosquito-borne diseases. Bacillus thuringiensis produces specific insecticidal crystal proteins toxic to mosquito larvae. In many parts of the South East Asian region, Bacillus thuringiensis is used for larval source management. In Nepal, larvicidal Bacillus thuringiensis is not available. The study aims to isolate larvicidal Bacillus thuringiensis from soil samples of Nepal to control mosquitoes. METHODS: Native Bacillus thuringiensis was obtained from soil samples by the acetate selection method. It was identified by observing crystal protein with Coomassie Brilliant Blue stain in a light microscope. The mosquito larvae were collected from different breeding habitats. A preliminary bioassay was performed by inoculating three loopful of 48 hours culture of spherical crystal protein producing Bacillus thuringiensis in a plastic cup containing 25 larvae and 100 ml of sterile distilled water. The cup was incubated at room temperature for 24 hours to observe the mortality of larvae. Further selective bioassay was performed with the isolate which showed 100% mortality, as described above in four replicates along with the negative and positive control. RESULTS: Out of 1385 Bacillus thuringiensis obtained from 454 soil samples, 766 (55.30%) were spherical crystal protein producers, among them, a single strain (14P2A) showed 100% mortality against mosquito larvae. The lethal concentration doses required to kill 50% and 90% of the larval population were 32.35 and 46.77 Parts per million respectively. CONCLUSIONS: The native Bacillus thuringiensis produces the crystal protein effective in killing mosquito larvae. The native Bacillus thuringiensis should be included as a tool to control mosquito-borne diseases in Nepal.


Assuntos
Bacillus thuringiensis , Controle de Mosquitos , Mosquitos Vetores , Animais , Mosquitos Vetores/microbiologia , 60509/prevenção & controle , Nepal , Solo
12.
Malar J ; 23(1): 100, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589884

RESUMO

BACKGROUND: Anopheles gambiae, the major malaria mosquito in sub-Saharan Africa, feed largely indoors at night. Raising a house off the ground with no barriers underneath reduces mosquito-house entry. This experiment tested whether walling off the space under an elevated hut affects mosquito-hut entry. METHODS: Four inhabited experimental huts, each of which could be moved up and down, were used in rural Gambia. Nightly collections of mosquitoes were made using light traps and temperature and carbon dioxide levels monitored indoors and outdoors using loggers. Each night, a reference hut was kept at ground level and three huts raised 2 m above the ground; with the space under the hut left open, walled with air-permeable walls or solid walls. Treatments were rotated every four nights using a randomized block design. The experiment was conducted for 32 nights. Primary measurements were mosquito numbers and indoor temperature in each hut. RESULTS: A total of 1,259 female Anopheles gambiae sensu lato were collected in the hut at ground level, 655 in the hut with an open ground floor, 981 in the hut with air-permeable walls underneath and 873 in the hut with solid walls underneath. Multivariate analysis, adjusting for confounders, showed that a raised hut open underneath had 53% fewer mosquitoes (95% CI 47-58%), those with air-permeable walls underneath 24% fewer (95% CI 9-36%) and huts with solid walls underneath 31% fewer (95% CI 24-37%) compared with a hut on the ground. Similar results were found for Mansonia spp. and total number of female mosquitoes, but not for Culex mosquitoes where hut entry was unaffected by height or barriers. Indoor temperature and carbon dioxide levels were similar in all huts. CONCLUSION: Raising a house 2 m from the ground reduces the entry of An. gambiae and Mansonia mosquitoes, but not Culex species. The protective effect of height is reduced if the space underneath the hut is walled off.


Assuntos
Anopheles , Culex , Inseticidas , Animais , Feminino , Gâmbia , Dióxido de Carbono/farmacologia , Controle de Mosquitos/métodos , Mosquitos Vetores , Inseticidas/farmacologia
13.
J Am Mosq Control Assoc ; 40(1): 32-49, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427588

RESUMO

The sterile insect technique (SIT) and the incompatible insect technique (IIT) are emerging and potentially revolutionary tools for controlling Aedes aegypti (L.), a prominent worldwide mosquito vector threat to humans that is notoriously difficult to reduce or eliminate in intervention areas using traditional integrated vector management (IVM) approaches. Here we provide an overview of the discovery, development, and application of SIT and IIT to Ae. aegypti control, and innovations and advances in technology, including transgenics, that could elevate these techniques to a worldwide sustainable solution to Ae. aegypti when combined with other IVM practices.


Assuntos
Aedes , Wolbachia , Animais , Humanos , Controle de Mosquitos/métodos , Mosquitos Vetores , Insetos
14.
Parasit Vectors ; 17(1): 117, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454517

RESUMO

BACKGROUND: Indoor residual spraying (IRS) capitalizes on the natural behavior of mosquitoes because Aedes aegypti commonly seeks indoor resting sites after a blood meal. This behavior allows mosquitoes to be exposed to insecticide-treated surfaces and subsequently killed. Combinations of deltamethrin and clothianidin with different modes of action have shown promise in IRS, effectively targeting both susceptible and pyrethroid-resistant malaria vectors. However, the effects of this approach on Aedes mosquitoes remain unclear. The present study tested the effects of deltamethrin-clothianidin mixture treatment on behavioral responses and life history traits of Taiwanese and Indonesian populations of Ae. aegypti. METHODS: We adopted an excito-repellent approach to explore the behavioral responses of pyrethroid-resistant Ae. aegypti populations from Indonesia and Taiwan to a deltamethrin-clothianidin mixture used in contact irritancy and non-contact repellency treatments. We further evaluated the life history traits of surviving mosquitoes (i.e., delayed mortality after 7-day post-treatment, longevity, fecundity, and egg hatching) and investigated the potential transgenerational hormetic effects of insecticide exposure (i.e., development rate and survival of immatures and adult mosquitos). RESULTS: All tested field populations of Ae. aegypti displayed strong contact irritancy responses; the percentage of escape upon insecticide exposure ranged from 38.8% to 84.7%. However, repellent effects were limited, with the escape percentage ranging from 4.3% to 48.9%. We did not observe immediate knockdown or mortality after 24 h, and less than 15% of the mosquitoes exhibited delayed mortality after a 7-day exposure period. However, the carryover effects of insecticide exposure on the survival of immature mosquitoes resulted in approximately 25% higher immature mortality than that in the control. By contrast, we further documented stimulated survivor reproduction and accelerated transgenerational immature development resulting from the sublethal effects of the insecticide mixture. In particular, the number of eggs laid by treated (both treatments) female mosquitoes increased by at least 60% compared with that of eggs laid by control female mosquitoes. CONCLUSIONS: IRS with deltamethrin-clothianidin effectively deters Aedes mosquitoes from entering residential areas and thereby reduces mosquito bites. However, the application rate (deltamethrin: 25 mg/m2; clothianidin: 200 mg/m2) may be insufficient to effectively kill Aedes mosquitoes. Insecticide response appears to vary across mosquito species; their behavioral and physiological responses to sublethal doses have crucial implications for mosquito control programs.


Assuntos
Aedes , Guanidinas , Inseticidas , Traços de História de Vida , Neonicotinoides , Nitrilas , Piretrinas , Tiazóis , Feminino , Animais , Inseticidas/farmacologia , Aedes/fisiologia , Indonésia , Resistência a Inseticidas , Óvulo , Piretrinas/farmacologia , Controle de Mosquitos/métodos , Mosquitos Vetores
15.
Math Biosci Eng ; 21(2): 1884-1898, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38454666

RESUMO

Here, we formulated a delayed mosquito population suppression model including two switching sub-equations, in which we assumed that the growth of the wild mosquito population obeys the Ricker-type density-dependent survival function and the release period of sterile males equals the maturation period of wild mosquitoes. For the time-switched delay model, to tackle with the difficulties brought by the non-monotonicity of its growth term to its dynamical analysis, we employed an essential transformation, derived an auxiliary function and obtained some expected analytical results. Finally, we proved that under certain conditions, the number of periodic solutions and their global attractivities for the delay model mirror that of the corresponding delay-free model. The findings can boost a better understanding of the impact of the time delay on the creation/suppression of oscillations harbored by the mosquito population dynamics and enhance the success of real-world mosquito control programs.


Assuntos
Aedes , Modelos Biológicos , Masculino , Animais , Mosquitos Vetores , Controle de Mosquitos/métodos , Probabilidade , Dinâmica Populacional
16.
BMC Public Health ; 24(1): 755, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468243

RESUMO

Malaria is a widespread and prevalent disease that affects human population globally, particularly in tropical countries. Malaria is a major health issue in sub-Saharan Africa and it contributes to morbidity and mortality among individuals in Africa. Pregnant women have been also reported as high risk of people been infected with malaria. This review attempted to evaluate the various methods used for health education programs and the effectiveness of the programs in improving ITNs among pregnant women.Methods The search involved various databases; EBCOHOST, MEDLINE, CINAHL, Cochrane library, ScienceDirect, PubMed, SAGE, Sringer link, Web of Science and Wiley Online Library. It was limited to full text research articles that report intervention studies, written in English Language, published between 2003 to 2022. The key words were "malaria", "malaria prevention", "health education", "insecticide-treated nets", "utilization", "pregnant women".Results A total of eleven articles met the inclusion criteria and included in the review. Six studies reported randomized controlled trials (RCTs) while five reported non-randomized controlled trials (NRCT).Conclusions There are evidences from the results which showed that health education programs were improved among pregnant women due to the use of ITNs and LLINS utilization. Furthermore, additional interventions directed at significant others need to be implemented, considering their important role in determining pregnant women's use of ITNs.


Assuntos
Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Gravidez , Feminino , Humanos , Malária/prevenção & controle , Educação em Saúde , África Subsaariana , Controle de Mosquitos/métodos
17.
Malar J ; 23(1): 87, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532416

RESUMO

BACKGROUND: The Magude Project assessed the feasibility of eliminating malaria in Magude district, a low transmission setting in southern Mozambique, using a package of interventions, including long-lasting insecticidal nets (LLINs). As the efficacy of LLINs depends in part on their physical integrity, this metric was quantified for Olyset® Nets post mass-distribution, in addition to net use, care and handling practices and other risk factors associated with net physical integrity. METHODS: Nets were collected during a cross-sectional net evaluation, nine months after the Magude project commenced, which was 2 years after the nets were distributed by the National Malaria Control Programme (NMCP). The physical integrity of the nets was assessed by counting and sizing the holes at different positions on each net. A structured questionnaire was administered to assess how the selected net was used and treated (care, wash and repair). Net bio-efficacy was assessed following the standard World Health Organization (WHO) cone bioassay procedures. RESULTS: Out of the 170 Olyset® Nets included in the analysis, 63.5% had been used the night before. The main reason for not using a net was the notion that there were no mosquitoes present. The average number of people using each net was 1.79. Two thirds of the nets had only been washed once or twice since distribution. Most nets (80.9%) were holed and 18% were torn, but none of the risk factors were significantly associated with net integrity, except for presence of mice in the household. Less than half of the participants noticed holes in holed nets, and of those only 38.6% attempted to repair those. None of the six nets that were tested for bio-efficacy passed the WHO threshold of 80% mosquito mortality. CONCLUSION: Overall the majority of Olyset® Nets were in serviceable condition two years post-distribution, but their insecticidal effect may have been lost. This study-together with previous evidence on suboptimal access to and use of LLINs in Magude district-highlights that LLINs as an intervention could have been optimized during the Magude project to achieve maximum intervention impact.


Assuntos
Culicidae , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Humanos , Animais , Camundongos , Estudos Transversais , Moçambique , Controle de Mosquitos/métodos , Malária/prevenção & controle
18.
Parasit Vectors ; 17(1): 115, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454494

RESUMO

BACKGROUND: Indoor residual spraying (IRS) was first implemented in the Atacora department, Benin from 2011 to 2012 using bendiocarb (carbamate) followed by annual spraying with pirimiphos-methyl (organophosphate) from 2013 to 2018. Before and after IRS implementation in Atacora, standard pyrethroid insecticide-treated bed nets were the main method of vector control in the area. This study investigated the knockdown resistance (kdr) gene (L1014F) and the acetylcholinesterase (ace-1) gene (G119S), before and during IRS implementation, and 4-years after IRS withdrawal from Atacora. This was done to assess how changes in insecticide pressure from indoor residual spraying may have altered the genotypic resistance profile of Anopheles gambiae s.l. METHOD: Identification of sibling species of An. gambiae s.l. and detection of the L1014F mutation in the kdr gene and G119S mutation in ace-1 genes was done using molecular analysis. Allelic and genotypic frequencies were calculated and compared with each other before and during IRS implementation and 4 years after IRS withdrawal. The Hardy-Weinberg equilibrium and genetic differentiation within and between populations were assessed. RESULTS: Prevalence of the L1014F mutation in all geographic An. gambiae s.l. (An. gambiae s.s., Anopheles. coluzzii, Anopheles. arabiensis, and hybrids of "An. gambiae s.s. and An. coluzzii") populations increased from 69% before IRS to 87% and 90% during and after IRS. The G119S allele frequency during IRS (20%) was significantly higher than before IRS implementation (2%). Four years after IRS withdrawal, allele frequencies returned to similar levels as before IRS (3%). Four years after IRS withdrawal, the populations showed excess heterozygosity at the ace-1 gene and deficit heterozygosity at the kdr gene, whereas both genes had excess heterozygosity before and during IRS (FIS < 0). No genetic differentiation was observed within the populations. CONCLUSIONS: This study shows that the withdrawal of IRS with bendiocarb and pirimiphos-methyl may have slowed down the selection of individual mosquitoes with ace-1 resistance alleles in contrast to populations of An. gambiae s.l. with the L1014F resistance allele of the kdr gene. This may suggest that withdrawing the use of carbamates or organophosphates from IRS or rotating alternative insecticides with different modes of action may slow the development of ace-1 insecticide-resistance mutations. The increase in the prevalence of the L1014F mutation of the kdr gene in the population, despite the cessation of IRS, could be explained by the growing use of pyrethroids and DDT in agriculture and for other domestic use. More observational studies in countries where carbamates or organophosphates are still being used as public health insecticides may provide additional insights into these associations.


Assuntos
Anopheles , Inseticidas , Fenilcarbamatos , Piretrinas , Animais , Inseticidas/farmacologia , Anopheles/genética , Benin , Alelos , Acetilcolinesterase/genética , Mosquitos Vetores/genética , Piretrinas/farmacologia , Resistência a Inseticidas/genética , Carbamatos/farmacologia , Organofosfatos/farmacologia , Controle de Mosquitos/métodos
19.
J Theor Biol ; 585: 111796, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38522665

RESUMO

Lymphatic filariasis (LF) has been targeted for elimination as a public health concern by 2030 with a goal to keep the prevalence of LF infections under the 1% threshold. While mass drug administration (MDA) is a primary strategy recommended by WHO, the use of insecticide treated nets (ITN) plays a crucial role as an alternative strategy when MDA cannot be used. In this paper, we use imitation dynamics to incorporate human behavior and voluntary use of ITN into the compartmental epidemiological model of LF transmission. We find the equilibrium states of the dynamics and the ITN usage as it depends on epidemiological parameters and the cost of ITNs. We investigate the conditions under which the voluntary use of ITNs can keep the LF prevalence under the 1% threshold. We found that when the cost of using the ITNs is about 105 smaller than the perceived cost of LF, then the voluntary use of ITNs will eliminate LF as a public health concern. Furthermore, when the ITNs are given away for free, our model predicts that over 80% of the population will use them which would eliminate LF completely in regions where Anopheles are the primary vectors.


Assuntos
Filariose Linfática , Mosquiteiros Tratados com Inseticida , Inseticidas , Animais , Humanos , Filariose Linfática/epidemiologia , Filariose Linfática/prevenção & controle , Mosquitos Vetores , Administração Massiva de Medicamentos , Controle de Mosquitos
20.
Parasit Vectors ; 17(1): 159, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549097

RESUMO

BACKGROUND: The WHO cone bioassay is routinely used to evaluate the bioefficacy of insecticide-treated nets (ITNs) for product pre-qualification and confirmation of continued ITN performance during operational monitoring. Despite its standardized nature, variability is often observed between tests. We investigated the influence of temperature in the testing environment, mosquito feeding status and mosquito density on cone bioassay results. METHODS: Cone bioassays were conducted on MAGNet (alphacypermethrin) and Veeralin (alphacypermethrin and piperonyl butoxide (PBO)) ITNs, using laboratory-reared pyrethroid-resistant Anopheles funestus sensu stricto (FUMOZ strain) mosquitoes. Three experiments were conducted using standard cone bioassays following WHO-recommended test parameters, with one variable changed in each bioassay: (i) environmental temperature during exposure: 22-23 °C, 26-27 °C, 29-30 °C and 32-33 °C; (ii) feeding regimen before exposure: sugar starved for 6 h, blood-fed or sugar-fed; and (iii) mosquito density per cone: 5, 10, 15 and 20 mosquitoes. For each test, 15 net samples per treatment arm were tested with four cones per sample (N = 60). Mortality after 24, 48 and 72 h post-exposure to ITNs was recorded. RESULTS: There was a notable influence of temperature, feeding status and mosquito density on An. funestus mortality for both types of ITNs. Mortality at 24 h post-exposure was significantly higher at 32-33 °C than at 26-27 °C for both the MAGNet [19.33% vs 7%; odds ratio (OR): 3.96, 95% confidence interval (CI): 1.99-7.87, P < 0.001] and Veeralin (91% vs 47.33%; OR: 22.20, 95% CI: 11.45-43.05, P < 0.001) ITNs. Mosquito feeding status influenced the observed mortality. Relative to sugar-fed mosquitoes, The MAGNet ITNs induced higher mortality among blood-fed mosquitoes (7% vs 3%; OR: 2.23, 95% CI: 0.94-5.27, P = 0.068) and significantly higher mortality among starved mosquitoes (8% vs 3%, OR: 2.88, 95% CI: 1.25-6.63, P = 0.013); in comparison, the Veeralin ITNs showed significantly lower mortality among blood-fed mosquitoes (43% vs 57%; OR: 0.56, 95% CI: 0.38-0.81, P = 0.002) and no difference for starved mosquitoes (58% vs 57%; OR: 1.05, 95% CI: 0.72-1.51, P = 0.816). Mortality significantly increased with increasing mosquito density for both the MAGNet (e.g. 5 vs 10 mosquitoes: 7% vs 12%; OR: 1.81, 95% CI: 1.03-3.20, P = 0.040) and Veeralin (e.g. 5 vs 10 mosquitoes: 58% vs 71%; OR 2.06, 95% CI: 1.24-3.42, P = 0.005) ITNs. CONCLUSIONS: The results of this study highlight that the testing parameters temperature, feeding status and mosquito density significantly influence the mortality measured in cone bioassays. Careful adherence to testing parameters outlined in WHO ITN testing guidelines will likely improve the repeatability of studies within and between product testing facilities.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Piretrinas , Animais , Inseticidas/farmacologia , Temperatura , Controle de Mosquitos/métodos , Piretrinas/farmacologia , Bioensaio/métodos , Açúcares , Resistência a Inseticidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA